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Abstract

More than 200 mutations are associated with antiretroviral resistance to drugs belonging to six licensed 
antiretroviral classes. More than 50 reverse transcriptase mutations are associated with nucleoside 
reverse transcriptase inhibitor resistance including M184V, thymidine analog mutations, mutations 
associated with non-thymidine analog containing regimens, multi-nucleoside resistance mutations, and 
several recently identified accessory mutations. More than 40 reverse transcriptase mutations are 
associated with nonnucleoside reverse transcriptase inhibitor resistance including major primary 
and secondary mutations, non-polymorphic minor mutations, and polymorphic accessory mutations. 
More than 60 mutations are associated with protease inhibitor resistance including major protease, 
accessory protease, and protease cleavage site mutations. More than 30 integrase mutations are 
associated with the licensed integrase inhibitor raltegravir and the investigational inhibitor elvitegravir. 
More than 15 gp41 mutations are associated with the fusion inhibitor enfuvirtide. CCR5 inhibitor 
resistance results from mutations that promote gp120 binding to an inhibitor-bound CCR5 receptor or 
CXCR4 tropism; however, the genotypic correlates of these processes are not yet well characterized. 
(AIDS Rev. 2008;10:67-84)
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Introduction

Nearly 25 antiretroviral drugs (ARV) have been licen­
sed for the treatment of HIV-1: nine nucleoside reverse 
transcriptase inhibitors (NRTI), four nonnucleoside re­
verse transcriptase inhibitors (NNRTI), nine protease 
inhibitors (PI), one fusion inhibitor, one CCR5 inhibitor, 
and one integrase inhibitor. The first CCR5 and integra­
se inhibitors were approved in 2007, increasing the 

number of ARV classes from four to six. Commensurate 
with the increase in new ARV and ARV classes, there 
has been an increase in knowledge about drug resis­
tance mutations. Entirely new vistas of mutations associ­
ated with integrase and CCR5 inhibitor resistance have 
also been opened, many new treatment-associated 
NRTI, NNRTI, and PI mutations have recently been 
described, and there has been a growing appreciation 
of the effects that different amino acid substitutions at 
the same position have on drug susceptibility. 

Together with the expansion in the number of ARV 
classes and number of individual ARV, a consensus 
has emerged that ARV therapy can and should be 
used to completely suppress HIV-1 replication, even in 
patients in whom many previous ARV regimens have 
failed1,2. This unambiguous therapeutic endpoint (com­
plete virologic suppression) necessitates a new frame­
work in which the vast knowledge of drug resistance 
mutations should be cast. The identification of specific 
drug resistance mutations can increasingly be used to 
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avoid ARV that retain only minimal residual activity in 
favor of newer ARV that are likely to be either fully or 
nearly fully active. Therefore, as the breadth of knowledge 
about HIV-1 drug resistance continues to expand, 
many of the subtle distinctions among drug resistance 
mutations are becoming less clinically relevant. 

Nucleoside reverse transcriptase 
inhibitors 

The NRTI resistance mutations include M184V, thy­
midine analog mutations (TAM), mutations selected by 
regimens lacking thymidine analogs, multi-nucleoside 
resistance mutations, and many recently described 
non-polymorphic accessory mutations. There are two 
biochemical mechanisms of NRTI resistance: enhanced 
discrimination against and decreased incorporation of 
NRTI in favor of authentic nucleosides, and enhanced 
removal of incorporated NRTI by promoting a phos­
phorolytic reaction that leads to primer unblocking. 
Altogether, M184V, non thymidine analog-associated 
mutations such as K65R and L74V, and the multi-nucleo­
side resistance mutation Q151M act by decreasing 
NRTI incorporation3,4. Thymidine analog mutations, the 
T69 insertions associated with multi-nucleoside resistance, 
and many of the accessory mutations facilitate primer 
unblocking5,7. 

M184V

M184V is the most commonly occurring NRTI resis­
tance mutation. In vitro, it causes high-level resistance 
to lamivudine (3TC) and emtricitabine (FTC), low-level 
resistance to didanosine (ddI) and abacavir, (ABC) 
and increased susceptibility to zidovudine (ZDV), sta­
vudine (d4T), and tenofovir (TDF)8. The possibility that 
isolates with M184V are compromised was suggested 
by the initial 3TC monotherapy studies showing that 
plasma HIV-1 RNA levels remained about 0.5 log10 
copies below baseline in patients receiving lamivudine 
for 6-12 months, despite the development of M184V 
and a high level of phenotypic resistance to 3TC9-11. 
Data from multiple 3TC-containing dual-NRTI regimens 
also suggest that 3TC continues to exert an antiviral 
effect even in patients whose virus isolates contain 
M184V12-14. 

M184V causes a median 1.5-fold and 3.0-fold reduction 
in susceptibility to ddI and ABC, respectively, in the 
PhenoSenseGT™ assay (Monogram Biosciences)15,16. 
These are levels of reduction that are above the wild-
type range but below the level at which these NRTI are 

inactive15. Several clinical trials have also shown that 
ABC and ddI retain clinical activity in the presence of 
M184V17-22. For example, the addition of ddI or ABC to 
the regimen of a patient with virologic failure has been 
associated to plasma HIV-1 RNA reductions of 0.6 and 
0.7 log10, respectively, in patients harboring viruses 
with M184V and no other drug resistance mutations19,21. 
The phenotypic and clinical significance of M184V is 
influenced by the presence or absence of other NRTI 
resistance mutations. For example, the presence of 
K65R or L74V in combination with M184V is sufficient 
for high-level resistance to both ABC and ddI16. In 
contrast, three or more TAM plus M184V are required 
for high-level ABC and ddI resistance8,16,19,20,23.

Thymidine analog mutations

Thymidine analog mutations are selected by the 
thymidine analogs ZDV and d4T. Thymidine analog 
mutations decrease susceptibility to these NRTI and to 
a lesser extent to ABC, ddI, and TDF8. Thymidine 
analog mutations are common in low-income countries 
in which fixed-dose combinations containing thymidine 
analogs are the mainstays of therapy. Thymidine analog 
mutations are also common in viruses from persons 
who began therapy in the pre-HAART era with in­
completely suppressive thymidine analog-containing 
regimens, but are becoming less common in areas in 
which the fixed-dose combinations of TDF/FTC and 
ABC/3TC have become the most common NRTI back­
bones. However, even in these areas, TAM and in 
particular the partial T215 revertants remain the most 
common type of transmitted NRTI resistance mutation24,25 
(Table 1). 

Thymidine analog mutations accumulate in two distinct 
but overlapping patterns26-31. The type I pattern includes 
the mutations M41L, L210W, and T215Y. The type II 
pattern includes D67N, K70R, T215F, and K219Q/E. 
Mutation D67N also occurs commonly with type I 
TAM30,32. However, K70R and L210W rarely occur 
together33. Type I TAM cause higher levels of pheno­
typic and clinical resistance to the thymidine analogs 
and cross-resistance to ABC, ddI, and TDF than do the 
type II TAM. Indeed, the presence of all three type I 
TAM markedly reduces the clinical response to ABC, 
ddI, and TDF19,29,30,34,35. The clinical significance of the 
type II TAM is not as well characterized. 

Other mutations at several of the TAM positions are 
common. The most common of these are the partial 
T215 revertants T215C/D/E/I/S/V36,37. These mutations 
arise from the drug resistance mutations T215Y/F to 
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increase HIV-1 fitness in the absence of selective drug 
pressure. They occur more commonly than reversion 
to the wild-type T because most of the partial T215 
revertants require only a single nucleotide mutation 
rather than the double nucleotide mutation required for 
Y or F to revert to T. The partial T215 revertants do not 
reduce drug susceptibility by themselves, but their pre­
sence in a previously untreated patient suggests that 
the patient may have been infected originally with a 
virus containing T215Y or F. Both K219N/R are two 
variants that unlike K219Q/E usually occur with type I 
rather than type II TAM32. Interestingly, two variants at 
position 70, K70E/G, are not selected by thymidine 
analogs and have phenotypic effects diametrically op­
posite to those of K70R, decreasing ABC, ddI, TDF, 
3TC, and FTC susceptibility, and increasing ZDV 
susceptibility38-40. Both D67G and D67E are selected 
by NRTI therapy, but their phenotypic and clinical 
significance are not well characterized41.

E44D/A and V118I are accessory mutations that 
generally occur with type I TAM. These mutations occur 
in about 1% of viruses from untreated patients and in 
a significantly higher proportion of viruses from patients 
receiving NRTI27,42,43. Although E44D plus V118I were 
first shown to cause low-level 3TC resistance when 
they occur in combination44, subsequent studies have 

suggested that in combination with TAM, these mutations 
reduce the susceptibility and clinical activity of most 
NRTI20,43,45-52. F214L is a common polymorphism that 
is negatively associated with type I TAM, and as a 
consequence may raise the genetic barrier to resistance 
in viruses developing type I TAM53,54. 

Mutations occurring in the absence  
of thymidine analogs 

The most common mutations in patients developing 
virologic failure while receiving a non thymidine analog-
containing NRTI backbone include M184V alone or 
M184V in combination with K65R or L74V55-57. K65R 
causes intermediate resistance to TDF, ABC, ddI, 3TC, 
and FTC, low-level resistance to d4T, and increased 
susceptibility to ZDV58-60. L74V causes intermediate 
resistance to ddI and ABC, and a slight increase in 
susceptibility to ZDV and TDF61. L74I has similar phe­
notypic properties to L74V, but is found primarily in 
viruses with multiple TAM, possibly because it increases 
ZDV and TDF susceptibility less than L74V62,63. 

Mutations M184V plus K65R have been reported 
primarily in patients receiving the NRTI backbone 
TDF/3TC64-65 and less commonly ABC/3TC55,66 or TDF/
FTC56,67. M184V plus L74V occurs primarily in persons 

Table 1. Nucleoside reverse transcriptase inhibitor resistance mutations*

NRTI 184 Thymidine analog mutations (TAM) Non thymidine analog 
regimen mutations 

Multi-NRTI resistance mutations 

41 67 70† 210 215 219 65 70† 74 75‡ 115 69 151 62 75‡ 77 116 

M M D K L T K K K L V Y T Q A V F F 

3TC VI RN EG Ins M V 

FTC VI RN EG Ins M V 

ABC VI L N W FY RN EG VI TM F Ins M V  I L Y 

DDI VI L N W FY RN EG VI TM Ins M V I L Y 

TDF L N W FY RN EG M F Ins M V 

D4T L N R W FY QE RN TM Ins M V I L Y 

ZDV L N R W FY QE Ins M V I L Y 

*The first row of letters contains the consensus amino acid at the position indicated by the number in the preceding row. All amino acids are indicated by their one letter 
code with the exception of “Ins” which is an abbreviation for one or more amino acid insertions. Mutations in bold are associated with higher levels of phenotypic resistance 
or clinical evidence for reduced virologic response. Additional treatment-selected mutations at the positions in this table include D67G/E, T69DS/A/I/N/G, K70N, V75A/S, and 
K219NR. Additional accessory mutations include K43E/Q/N, E44D/A, V118I, H208Y, D218E, H221Y, and L228H/R. These accessory mutations generally occur with TAM and 
appear to be associated with a reduced level of susceptibility to multiple NRTI. Several mutations are associated with increased susceptibility: M184V/I increases 
susceptibility to ZDV, TDF, and d4T; L74V increases susceptibility to ZDV and TDF; K65R increases susceptibility to ZDV. 
†K70R occurs in viruses from patients receiving thymidine analogs; K70E/G occur with non thymidine analog-containing regimens. 
‡V75I occurs in combination with Q151M; V75TM occur in a variety of different treatment and mutational contexts.
NRTI: nucleoside reverse transcriptase inhibitor; 3TC: lamivudine; FTC: emtricitabine; ABC: abacavir; DDI: didanosine; TDF: tenofovir; D4T: stavudine; ZDV: zidovudine. 
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receiving ABC/3TC or ddI/3TC/FTC backbones55,66,68,69. 
K65R and L74V rarely occur in the same viruses; 
however, several patients developing virologic failure 
with L74V while receiving an ABC- or ddI-containing 
regimen have been found to have minor variants 
containing K65R69,70.

There is a bidirectional antagonism between K65R 
and the TAM. K65R interferes with TAM-mediated 
primer unblocking and the TAM interfere with K65R-
mediated NRTI discrimination71,72. As a result, viruses 
containing K65R in combination with TAM are uncom­
mon73. The emergence of K65R is suppressed to a 
greater extent in regimens containing ZDV compared 
with d4T59,74-81. 

Less common mutations occurring during virologic 
failure with non thymidine analog regimens include 
K65N, K70E/G, and Y115F38,40,55,82,83. K65N and K70E/G 
have a resistance profile similar to K65R, but appear to 
cause less resistance than K65R to ABC, ddI, TDF, 3TC, 
and FTC38-40,82,84,85. Y115F reduces ABC susceptibility86 
and causes low-level cross-resistance to TDF23,58,61,87. 
Although T69D and V75T were originally identified as 
causing resistance to ddC88 and d4T89, respectively, a 
range of mutations at these positions (e.g. T69N/S/I/G 
and V75M/A) have been associated with reduced sus­
ceptibility to other NRTI, including ddI and d4T23,89-92. 

Two lines of evidence suggest that K65R may occur 
more commonly in non subtype B compared with sub­
type B viruses. K65R has emerged more rapidly during 
the in vitro passage of subtype C compared with subtype 
B isolates in the presence of increasing TDF concen­
trations93. Anecdotal reports have also suggested that 
K65R may occur more commonly in low-income 
countries when patients with non-B subtype viruses are 
treated with d4T/ddI and d4T/3TC94,95, or TDF/3TC96. 

Multi-nucleoside resistance mutations 

Amino acid insertions at codon 69 generally occur in 
the presence of multiple TAM, and in this setting are 
associated with intermediate resistance to 3TC and 
FTC and high-level resistance to each of the remaining 
NRTI97-101. Q151M is a 2-bp mutation (CAG→ATG) that 
is usually accompanied by two or more of the following 
mutations: A62V, V75I, F77L, and F116Y. The Q151M 
complex causes high-level resistance to ZDV, d4T, 
ddI, and ABC, and intermediate resistance to TDF, 
3TC, and FTC61,102,103. This complex developed in 5% 
of patients who received ddI in combination with ZDV 
or d4T98,104, but is rarely selected by 3TC- or FTC-
containing regimens. Q151M may be uncommon because 

the two intermediate amino acids Q151L (CAG→CTG) 
and Q151K (CAG→AAG) are poorly replicating and 
rarely observed105-107. Q151M is a common genetic 
mechanism of NRTI resistance in HIV-2-infected 
persons108,109. The optimal NRTI combination to use in 
patients with codon 69 insertions or Q151M is not 
known110,111. 

Miscellaneous mutations

Mutations K43E/Q/N, E203D/K, H208Y, D218E, H221Y, 
K223Q, and L228H/R are non-polymorphic NRTI-
selected mutations which generally follow TAM and 
which have subtle effects on HIV-1 NRTI susceptibility 
and replication27,53,61,112. Q145M is a rare mutation that 
has been reported by one group to reduce susceptibility 
to multiple NRTI and NNRTI113,114. P157S, which is 
homologous to the mutation causing 3TC resistance in 
FIV, has been reported once in an HIV-1 isolate115,116. 

Several mutations in the connection and RNaseH 
domains of HIV-1 RT play an accessory role in reducing 
HIV-1 susceptibility in combination with TAM, most likely 
by slowing the activity of RNaseH and thereby allowing 
more time for TAM-mediated primer unblocking117. The 
single most important of these mutations may be N348I, 
a non-polymorphic mutation that occurs in about 10% 
of NRTI-treated patients118. N348I causes a twofold 
reduction in ZDV susceptibility when it occurs in com­
bination with multiple TAM118. G333E/D, A360T, and 
A371V, mutations with similar phenotypic effects, occur 
in about 5% of NRTI-naive and 10% of NRTI-treated 
patients119-122. Although several RNaseH mutations 
may potentially reduce ZDV susceptibility in combina­
tion with TAM123, few have been observed in clinical 
isolates124,125. 

Nonnucleoside reverse transcriptase 
inhibitors

The NNRTI inhibit HIV-1 RT allosterically by binding 
to a hydrophobic pocket close to but not contiguous 
with the RT active site. Nearly all of the NNRTI resis­
tance mutations are within the NNRTI binding pocket 
or adjacent to residues in the pocket126,127. There is a 
low genetic barrier to NNRTI resistance, with only one 
or two mutations required for high-level resistance. 
High levels of clinical cross-resistance exist among the 
NNRTI because many of the NNRTI resistance muta­
tions reduce susceptibility to multiple NNRTI and be­
cause the low genetic barrier to resistance allows a 
single NNRTI to select for multiple NNRTI resistance 
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mutations in different viruses, even if only a single mu­
tation is detected by standard population-based se­
quencing128,129. 

The NNRTI resistance mutations can be classified 
into the following categories: (i) primary NNRTI resis­
tance mutations that cause high-level resistance to one 
or more NNRTI and that are among the first to develop 
during NNRTI therapy; (ii) secondary NNRTI resistance 
mutations that usually occur in combination with primary 
NNRTI resistance mutations, but that also have clinically 
significant implications for choosing an NNRTI, particu­
larly etravirine; (iii) minor non-polymorphic mutations 
that may occur alone or in combination with other 
NNRTI resistance mutations and that cause consistent 
but low-level reductions in NNRTI susceptibility; and 
(iv) polymorphic accessory mutations that modulate the 
effects of other NNRTI resistance mutations. Table 2 
summarizes effect of the major primary, major secondary, 
and minor NNRTI resistance mutations on delavirdine, 
efavirenz, etravirine, and nevirapine. 

Because delavirdine is rarely used, it is not discussed 
in the sections that follow. The resistance profile of 
delavirdine is distinguished from that of the other 
NNRTI by the fact that G190A/S increase delavirdine 
susceptibility, providing perhaps the only virologic ra­
tionale for its use130. Although there have been case 
reports of virologic responses to delavirdine-containing 
salvage treatment regimens in treating viruses with 
G190A/S, the extent to which delavirdine contributed 
to these successes is not known131. 

Primary nonnucleoside reverse 
transcriptase inhibitor resistance 
mutations 

Each of the primary NNRTI resistance mutations – 
K103N/S, V106A/M, Y181C/I/V, Y188L/C/H, and G190A/
S/E – cause high-level resistance to nevirapine and 
variable resistance to efavirenz, ranging from about 
twofold for V106A and Y181C, sixfold for G190A, 20-fold 
for K103N, and more than 50-fold for Y188L and 
G190S61,132,133. Although transient virologic responses 
to an efavirenz-based salvage therapy regimen occur 
in some NNRTI-experienced patients, a sustained 
response has been uncommon128,134-136. In contrast, 
patients with any single one of the primary NNRTI 
resistance mutations may benefit from etravirine sal­
vage therapy, although the mutations at position 181 and 
to a lesser extent 190 compromise etravirine response 
and may provide the foundation for the development 
of high-level etravirine resistance137-139. 

Major secondary nonnucleoside  
reverse transcriptase inhibitor  
resistance mutations 

L100I, K101P, P225H, F227L, M230L, and K238T 
are secondary mutations that usually occur in com­
bination with one of the primary NNRTI resistance 
mutations. L100I and K101P, which occur in combi­
nation with K103N, further decrease nevirapine and 
efavirenz susceptibility from 20-fold with K103N alone 
to more than 100-fold61. Although viruses with K103N 
are fully susceptible to etravirine, viruses with L100I 
plus K103N display about 10-fold decreased sus­
ceptibility133. P225H and K238T/N usually occur in 
combination with K103N and synergistically reduce 
nevirapine and efavirenz susceptibility132,140,141. F227L 
nearly always occurs in combination with V106A, leading 
to synergistic reductions in nevirapine susceptibility142. 
M230L, which may occur alone, decreases the sus­
ceptibility of all NNRTI including etravirine by 20-fold 
or more133,143. 

V179F, F227C, L234I, and L318F are rare mutations 
that are of increased importance now that etravirine is 
licensed. V179F occurs solely in combination with 
Y181C/I/V and acts synergistically to increase etravirine 
resistance from fivefold to 10-fold with Y181C/I/V alone 
to more than 100-fold133. F227C, an exceedingly rare 
mutation, reduces etravirine susceptibility 10-fold to 
20-fold144,145. L234I, which has been selected in vitro 
by etravirine, acts synergistically with Y181C to reduce 
etravirine susceptibility133. L318F, which was first reported 
to reduce delavirdine and nevirapine susceptibility by 
15-fold and threefold, respectively146, has also been 
selected in vitro by etravirine and found to reduce 
etravirine susceptibility synergistically with Y181C133.

Minor nonnucleoside reverse 
transcriptase inhibitor resistance 
mutations 

A98G, K101E, V108I, and V179D/E are common 
NNRTI resistance mutations that reduce susceptibility 
to nevirapine and efavirenz about twofold to fivefold147. 
Although K103R alone, which occurs in about 1% of 
untreated persons, has no effect on NNRTI susceptibility, 
the combination of K103R plus V179D reduces nevi­
rapine and efavirenz susceptibility by 15-fold141. Data 
are not available on the effect of these mutations on 
etravirine susceptibility. V179D, and rarely A98G and 
V108I, are observed in patients who have never been 
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treated with NNRTI148. The optimal management of 
patients with viruses containing these mutations is not 
known. Although low-level baseline resistance has 
not been shown to decrease the virologic responses 
to first-line NNRTI-containing regimens149, efavirenz and 
etravirine may be preferable to nevirapine because 
these NNRTI have generally been more active than 
nevirapine against these and other NNRTI-resistant 
variants127,150.

Miscellaneous nonnucleoside  
reverse transcriptase inhibitor  
resistance mutations 

Several highly polymorphic RT mutations, such as 
K101Q, I135T/M, V179I, and L283I, reduce susceptibil­
ity to nevirapine and efavirenz by about twofold and 
may act synergistically with primary NNRTI resistance 
mutations151,152. Other mutations such as L74V, H221Y, 
K223E/Q, L228H/R, and N348I are selected primarily 
by NRTI, yet also cause subtle reductions in NNRTI 
susceptibility41,107,112,118,152-154. V90I and V106I are high­
ly polymorphic mutations that were associated with 
decreased virologic response to etravirine in the DUET 
clinical trial, but may owe this association to their cor­
relation with other NNRTI resistance mutations139. Mu­
tations at positions 31, 135, and 245 have been re­
ported to cause low-level NNRTI resistance in a non 
subtype B context155,156. Conversely, there is a large 
body of evidence showing that type I TAM increase 
NNRTI susceptibility157,158.

Protease inhibitors

As the PI class has expanded to nine licensed ARV, 
the individual PI have evolved increasingly specific 
roles. Ritonavir is used solely for pharmacokinetic 
boosting (indicated by/r). Lopinavir/r, atazanavir/r, 
fosamprenavir/r, and less commonly saquinavir/r are 
used for first-line therapy, whereas lopinavir/r, tiprana­
vir/r, and darunavir/r are used for salvage therapy1,2. 
Nelfinavir, which cannot be boosted by ritonavir, and 
unboosted atazanavir and fosamprenavir are alterna­
tive but suboptimal choices for first-line therapy be­
cause of their higher risk of virologic failure with drug 
resistance compared with boosted PI. Although indi­
navir/r may be effective for first-line or salvage therapy, 
it is not recommended because of its high risk of 
nephrolithiasis. 

More mutations are selected by the PI than by any 
other ARV class. The effect of PI resistance mutations 
on individual PI may be difficult to quantify when many 
mutations are present in the same virus isolate or when 
mutations occur in unusual patterns. The effect of PI 
resistance mutations on drug susceptibility can also be 
modulated by gag cleavage site mutations and pos­
sibly other parts of gag that influence Gag-Pol pro­
cessing. Although multiple protease mutations are 
often required for HIV-1 to develop clinically significant 
resistance to a ritonavir-boosted PI159-161, some mu­
tations indicate that a particular PI, even when boosted, 
may not be effective. Many protease mutations are 
accessory, compensating for the replication impairment 

Table 2. Nonnucleoside reverse transcriptase inhibitor resistance mutations* 

98 100 101 103 106 108 179 181 188 190 225 227 230 236 238 

A L K K V V V Y Y G P F M P K 

NVP G I EP NS AM I DEF CIV LHC ASE LC L NT 

DLV G I EP NS AM I DEF CIV LHC E C L L NT 

EFV G I EP NS AM I DEF CIV LHC ASE H C L NT 

ETR† G I EP DEF CIV LHC ASE C L 

*The first row of letters contains the consensus amino acid at the position indicated by the number in the preceding row. All amino acids are indicated by their one letter code. 
Mutations in bold are associated with higher levels of phenotypic resistance or clinical evidence for reduced virologic response. Several additional uncommon mutations at 
the positions in this table are also associated with NNRTI therapy or phenotypic resistance including: K101N/H, K103T/H, G190Q/C/T/V. Additional NNRTI resistance mutations 
that are not in the table include E138K, L234I, and L318F. E138K has been selected in vitro by ETR and been shown to cause low-level reductions in susceptibility to each 
of the NNRTI133,145. L234I has been selected in vitro by ETR, acts synergistically with Y181C to reduce ETR susceptibility133. L318F is a non-polymorphic NNRTI-selected 
mutation that decreases susceptibility to DLV and to a lesser extent to nevirapine and possibly ETR133,146. Several polymorphic mutations such as K101Q, I135T/M, V179I, 
and L283I and NRTI selected mutations such as L74V, H221Y and N348I may cause subtle reductions in NNRTI susceptibility118,152. A98S, K101R/Q, K103R, V106I, E138A, 
V179I, and K238R are polymorphic substitutions with little if any effect on drug resistance on their own. However, the combination of K103R + V179D (each of which occurs 
in 1-2% of untreated persons) reduces susceptibility to NVP, DLV, and EFV about 15-fold141.
†In the DUET study, a univariate analysis showed that persons with viruses with three or more of the following mutations responded similarly to placebo and ETR: V90I, 
A98G, L100I, K101E/P, V106I, V179D/F, Y181C/I/V, and G190A/S139.
NNRTI: nonnucleoside reverse transcriptase inhibitor; NVP: nevirapine; DLV: delavirdine; EFV: efavirenz; ETR: etravirine. 
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of other PI resistance mutations or reducing PI sus­
ceptibility only in combination with other PI resistance 
mutations. 

Major protease inhibitor resistance 
mutations 

Table 3 lists mutations at 17 largely non-polymorphic 
positions that are of the most clinical significance. Mu­
tations at 13 of these 17 positions have been shown to 
reduce susceptibility to one or more PI, including 
mutations at the substrate cleft positions 23, 30, 32, 
47, 48, 50, 82, and 84, the flap positions 46 and 54, 
and interior enzyme positions 76, 88, and 90. Mutations 
at four of these 17 positions (24, 33, 53, and 73) are 
included because they are non-polymorphic, occur 
commonly, and have disparate effects on different PI61. 

Whereas many mutations reduce nelfinavir suscep­
tibility, L23I, D30N, M46I/L, G48V/M, I84V, N88D/S, 
and L90M are relative contraindications to the use of 
nelfinavir in that an inferior virologic response to 
therapy relative to that obtainable with most other PI 
would be expected14,162-167. I50L and N88S and pos­
sibly I84V, are relative contraindications for the use of 

atazanavir/r23,61,168-174. G48V/M, I84V, and L90M are rela­
tive contraindications to the use of saquinavir/r175-177. 
V32I, I47V/A, I54L/M, and I84V are relative contraindi­
cations to the use of fosamprenavir/r174,178-181. Muta­
tions at position 82 as well as I84V may be relative 
contraindications to the use of indinavir/r. There are 
few known contraindications to the salvage therapy PI 
(lopinavir/r, tipranavir/r, darunavir/r), except V47A for 
lopinavir/r178,182,183 and V82L/T for tipranavir/r184. 

At six of the 17 PI resistance mutations in table 3, 
only a single mutation has been shown to be associated 
with PI resistance – L23I, L24I, D30N, V32I, L76V, and 
L90M. At 11 positions, different mutations are associated 
with PI resistance, and at positions 50, 54, 82, and 
88 these differences can be responsible for dramati­
cally different effects on PI susceptibility. Additional, 
uncommon, PI-selected mutations not shown in table 
3 include L33I, M46V, F53Y, I54S, G73C/A, V82M/C, 
and N88T/G23,41,185. V82I, which does not contribute to 
PI resistance, is a polymorphism that is the consensus 
residue for subtype G isolates. L33V is another polymor­
phism that is not associated with PI therapy or resis­
tance. L33F and M46I/L, although non-polymorphic in 
most subtypes, occur at a prevalence of about 0.5-1% 

Table 3. Protease inhibitor resistance mutations*

23 24 30 32 33 46 47 48 50† 53 54 73 76† 82 84 88† 90 

L L D V L M I G I F I G L V I N L 

ATVr I F IL V VM L L VTALM ST ATFS VAC DS M 

DRVr‡ I F VA V LM ST V VAC M 

FPVr  I F IL VA V VTALM ST V ATFS VAC M 

IDVr I V IL V L VTALM ST V AFTS VAC S M 

LPVr I I F IL VA VM V VTALM V AFTS VAC M 

NFV I I N F IL V VM L VTALM ST AFTS VAC DS M 

SQVr I VM L VTALM ST AT VAC S M 

TPVr§ I F IL V VAM ATFSL VAC M 

*The first row of letters contains the consensus amino acid at the position indicated by the number in the preceding row. All amino acids are indicated by their one letter code. 
Mutations in bold have been shown to reduce in vitro susceptibility or in vivo virologic response. Mutations in bold underline are relative contraindications to the use of 
specific PI. Several additional uncommon mutations at the 17 positions in this table are also selected by PI, but have not been evaluated phenotypically including L24F, 
L33I, M46V, F53Y, I54S, G73C/A, V82M/C, and N88T/G. In contrast, V82I and L33V are polymorphisms that are not associated with PI therapy. Accessory protease mutations 
that are not in the table include the polymorphic mutations L10I/V, I13V, K20R/M/I, M36I, D60E, I62V, L63P, A71V/T, V77I, and I93L and the non-polymorphic mutations 
L10F/R, V11I, E34Q, E35G, K43T, K45I, K55R, Q58E, A71I/L, T74P/A/S, V75I, N83D, P79A/S, I85V, L89V, T91S, Q92K and C95F.
†I50L increases susceptibility to all PI except ATV; I50V and I54L increase TPV susceptibility; N88S increases FPV susceptibility; L76V increases ATV, SQV and TPV susceptibility. 
‡A genotypic susceptibility score (GSS) for DRV based on the POWER clinical trials includes the number of the following 11 mutations: V11I, V32I, L33F, I47V, I50V, I54L/M, 
G73S, L76V, I84V, and L89V201. In a subsequent update the substitution of T74P for G73S led to an improved model202.
§A GSS for TPV/r based on the RESIST studies identified 21 mutations at 11 positions: L10V, I13V, K20M/R/V, L33F, E35G, M36I, K43T, M46L, I47V, I54A/M/V, Q58E, H69K, 
T74P, V82L/T, N83D, and I84V184. An updated TPV/r GSS excluded I13V, K20M/R/V, E35G, and H69K; reclassified I47V, I54A/M/V, Q58E, T74P, V82L/T, and N83D as major 
mutations; reclassified L10V, M36I, K43T, M46L, and I84V as minor mutations; and included L24I, I50L/V, I54L, and L76V as mutations likely to improve TPV susceptibility 
and virological response200. A complete listing of studies of genotypic PI response predictors can be found at: http://hivdb.stanford.edu/pages/geno_clinical_review/PI.html 
ATVr: atazanavir/ritonavir(r); DRVr: darunavir/r; FPVr: fosamprenavir/r; IDVr: indinavir/r; LPVr: lopinavir/r; NFV: nelfinavir; SQVr: saquinavir/r; TPVr: tipranavir/r. 
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in subtype A and CRF01_AE isolates (http://hivdb.stan­
ford.edu/cgi-bin/MutPrevBySubtypeRx.cgi)148. 

Several resistance mutations are associated with in­
creased susceptibility to one or more PI, including I50L 
which increases susceptibility to all PI other than atazana­
vir168, I50V and I54L which increase tipranavir suscep­
tibility186, N88S which increases fosamprenavir suscep­
tibility187, and L76V which increases susceptibility to 
atazanavir, saquinavir, and tipranavir23,188.

Accessory protease inhibitor  
resistance mutations 

Mutations at positions 10, 20, 36, 63, and 71 up­
regulate protease processivity to compensate for the 
decreased fitness associated with the major PI resistance 
mutations189-193. Positions 20, 36, and 63 are highly 
polymorphic. In contrast, L10I/V and A71V/T occur in 
5 and 10%, respectively, of PI-naive patients, and in a 
much higher proportion of PI-treated patients, while 
L10F/R and A71I/L do not occur in the absence of PI 
therapy147. In one retrospective study, baseline muta­
tions at positions 10 and 36 were associated with an 
increased risk of virologic failure in patients receiving 
older PI-based regimens containing nelfinavir or an 
unboosted PI194,195. 

Additional PI-selected accessory mutations include 
the highly polymorphic mutations I13V, D60E, I62V, 
V77I and I93L, and many uncommon non-polymorphic 
mutations including V11I, E34Q, E35G, K43T, K45I, 
K55R, Q58E, T74P/A/S, V75I, N83D, P79A/S, I85V, L89V, 
T91S, Q92K and C95F23,41,196-199. Several of the non-
polymorphic mutations have become part of the geno­
typic susceptibility scores for tipranavir/r (E35G, K43T, 
Q58E, T74P, and N83D) and darunavir (V11I, T74P, 
and L89V), based on analyses of the RESIST184,200 and 
POWER and DUET201,202 clinical trials. These mutations, 
however, have not been evaluated for their effects on 
other PI, but their presence at baseline in these two 
clinical trials for heavily PI-experienced patients sug­
gests that they are also associated with decreased 
susceptibility to the older PI. 

Gag cleavage site mutations 

The gag gene codes for the matrix (MA), capsid 
(CA), and nucleocapsid (NC) proteins, a protein of 
uncertain function, p6, and two spacer peptides: p2 
(between CA and NC) and p1 (between NC and p6). 
The gag polypeptide is cleaved at the MA/CA, CA/p2, 
p2/NC, NC/p1, and p1/6 junctions. A stem-loop structure 

between p1 and p6 stimulates the frame shifting neces­
sary to create the Gag-Pol polypeptide. The residues 
surrounding each protease cleavage site are desig­
nated 5’-P4, P3, P2, P1/P1’, P2’, P3’, P4’-3’. 

Mutations that improve the kinetics of PI-resistant 
proteases emerge at several protease cleavage sites 
during PI treatment203-205. Most gag cleavage site mu­
tations occur at NC/p1 and p1/p6203,206 – sites at which 
cleavage may be rate limiting for gag and Gag-Pol 
polyprotein processing207. A431V, at the P2 position of 
NC/p1, is associated with mutations at protease positions 
24, 46, and 82208,209. L449F, at the P1’ position of p1/p6, 
is associated with the protease mutation pair D30N/
N88D and with I84V209,210. P453L, at the P5’ position of 
the p1/p6 site, is associated with protease mutations at 
positions 32211, 47211, 50212, 84, and 90209,213. A set of 
three NC/p1 mutations (A431V, K436E, and I437T/V) 
developing during in vitro selection with the investiga­
tional PI RO033-4649 was found to cause a twofold 
reduction in susceptibility to multiple PI, even in the 
absence of mutations in protease214. Several p6 mu­
tations, including insertions in a proline-rich region 
containing a conserved PTAP motif, occur more fre­
quently in viruses with PI resistance mutations than in 
wild-type viruses215-219.

Subtype-specific mechanisms  
of protease inhibitor resistance 

Naturally occurring polymorphisms in the different 
protease subtypes often occur at sites of accessory PI 
resistance mutations in subtype B isolates220. For ex­
ample, the accessory PI resistance mutations I13V, 
K20I, M36I, and I93L represent the consensus variant 
in one or more non-B subtypes221. Although these mu­
tations may result in subtle structural and biochemical 
differences among subtypes222-224, the vast majority of 
in vitro and in vivo studies suggest that the licensed PI 
are as active against wild-type non-B viruses as they 
are against wild-type subtype B viruses220,225.

With several notable exceptions, the genetic 
mechanisms of PI resistance are also highly similar 
among the different subtypes226. Although both D30N 
and L90M occur in non-B viruses during nelfinavir 
therapy, D30N occurs more commonly in subtype B 
viruses and L90M occurs more commonly in subtype 
C, F, G, and CRF01_AE viruses227-231. The increased 
predilection for certain subtypes to develop L90M may 
relate to the presence of variants other than L (the 
subtype B consensus) at position 89230-232. Similarly, 
T74S, a polymorphism that occurs in 8% of subtype C 
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sequences, but rarely in other subtypes, is associated 
with reduced susceptibility to nelfinavir61,233. 

The fact that V82I is the consensus amino acid for 
subtype G affects the spectrum of mutations observed 
at this position in PI-resistant subtype G isolates: V82T 
and the rare mutation V82M occur more frequently than 
V82A in subtype G isolates because T and M require 
a single base pair change, whereas A requires two 
base pair changes234. However, for nearly all other 
subtypes and protease mutations, a similar number of 
nucleotide changes is required to convert a wild-type 
residue into one associated with drug resistance235. 

Integrase inhibitors

The HIV-1 integrase contains 288 amino acids en­
coded by the 3’ end of the HIV-1 pol gene. It has three 
functional domains: the N-terminal domain (NTD), which 
encompasses amino acids 1-50 and contains an HHCC 
motif that coordinates zinc binding236, the catalytic 
core domain (CCD) which encompasses amino acids 
51-212 and contains the catalytic triad D64, D116, and 
E152, known as the DDE motif, and the C-terminal 
domain (CTD), which encompasses amino acids 
213-288 and is involved in host DNA binding through 
an as yet poorly defined mechanism. 

A multimeric form of integrase catalyzes the cleavage 
of the conserved 3’ dinucleotide CA (3’ processing) 
and the ligation of the viral 3’-OH ends to the 5’-DNA 
of host chromosomal DNA (strand transfer)237. Crystal 
structures of the CCD plus CTD domains238 and the 
CCD plus NTD239 have been solved, but the relative 
conformation of the three sub domains and of the ac­
tive multimeric form of the enzyme are not known. 
There has been one published crystal structure of the 
CCD bound to an early prototype inhibitor (5CITEP)240 
but no structures of the CCD bound to one of the integrase 
inhibitors (INI) in clinical use or to a DNA template. 

The current generation of clinically relevant INI (the 
FDA-licensed inhibitor raltegravir and the investiga­
tional inhibitor elvitegravir) preferentially inhibit strand 
transfer by binding to the target DNA site of the en­
zyme. These INI as well as the initial series of strand-
transfer diketo acid inhibitors including S-1360241 and 
L870,810242 select for mutations in the part of the inte­
grase bound to 5CITEP240,243,244. In vitro drug suscep­
tibility data and surveys of integrase sequences from 
HIV-1-infected patients previously treated with other 
ARV classes or who were treatment-naive suggest that 
there is no cross-resistance between the INI and the 
other HIV-1 enzyme inhibitors245-248. 

Most INI resistance mutations are in the vicinity of 
the putative INI binding pocket. Some of the INI resis­
tance mutations decrease susceptibility by themselves, 
whereas others compensate for the decreased fitness 
associated with other INI resistance mutations249. There 
is a high level of cross-resistance between raltegravir 
and elvitegravir, as well as between these INI and the 
first generation of strand-transfer inhibitors, suggesting 
that the development of non cross-resistant INI will be 
challenging245,250-255. 

Among 38 patients with virologic failure in Merck 
Protocol 005, nearly all developed INI resistance muta­
tions including N155H or Q148H/R/K, each of which 
reduces raltegravir susceptibility by 10-fold to 25-fold251. 
Higher levels of raltegravir resistance occurred with 
the accumulation of additional mutations. E92Q and the 
two polymorphic mutations L74M and G163R generally 
occurred with N155H, whereas G140A/S generally oc­
curred with Q148H/R/K251. Additional mutations reported 
to the FDA as being selected either in vitro or in vivo 
by raltegravir include the non-polymorphic mutations 
L74R, E138A/K, Y143R/C/H, N155S, H183P, Y226D/F/H, 
S230R, and D232N and the polymorphic mutations 
T97A and V151I256,257. 

Among 30 patients developing virologic failure while 
receiving elvitegravir in GS-US-1830105, 28 developed 
INI resistance mutations including E92Q, E138K, 
Q148H/R/K, or N155H in 11 patients, and S147G or 
T66I/A/K in nine and five patients, respectively252. 
Additional mutations selected in vitro by elvitegravir 
include the non-polymorphic mutations H51Y, Q95K, 
F121Y, Q146P, S153Y, and R263K, and the slightly 
polymorphic mutation E157Q245,250. For both raltegravir 
and elvitegravir, virologic failure has generally been 
accompanied by 100-fold or greater decreases in 
susceptibility and the development of two or more INI 
resistance mutations. 

Table 4 lists the non-polymorphic INI resistance 
mutations that have been selected in patients receiving 
raltegravir or elvitegravir, or that have been character­
ized in vitro for susceptibility to both drugs. Mutations 
at positions 92, 121, 140, 148, and 155 are associated 
with more than fivefold to 10-fold decreased suscepti­
bility to both INI, whereas mutations at positions 66 and 
147 are associated with marked decreases in suscep­
tibility only to elvitegravir.

Fusion inhibitors 

Enfuvirtide, the only licensed fusion inhibitor, inhibits 
the interaction of the heptad repeat (HR) 1 and 2 domains 



AIDS Reviews. 2008;10

76

of gp41 by mimicking a part of HR2 (amino acids 127-
162) that binds to a conserved part of HR1. It has 
antiviral activity approaching that of the most active ARV 
such as efavirenz, lopinavir/r, and raltegravir. However, 
resistance may develop rapidly in patients receiving 
enfuvirtide for salvage therapy who do not receive a 
sufficient number of additional active drugs. Indeed, 
the emergence of resistance strains followed by virologic 
rebound has been observed in some patients within 
two to four weeks258,259.

The extra-viral portion of gp41 is the most conserved 
region in the HIV-1 envelope glycoprotein and there is 
little naturally occurring variation in the HR1 binding 
site among the different group M subtypes260-265. None­
theless, there is about 10-fold variation in enfuvirtide 
susceptibility among isolates from enfuvirtide-naive 
persons, possibly resulting from gp41 polymorphisms 
outside of the HR1 binding site266-269. However, despite 
the wider range in baseline enfuvirtide susceptibility 
than for other ARV, there is no evidence that enfu­
virtide-naive patients infected with viruses at the lower 
ranges of enfuvirtide susceptibility respond less well to 
enfuvirtide267,269. 

Mutations in gp41 codons 36 to 45, the region to 
which enfuvirtide binds, are primarily responsible for 
enfuvirtide resistance269-274. Table 5 lists the most com­
monly observed enfuvirtide resistance mutations in this 
region. A single mutation is generally associated with 
about 10-fold decreased susceptibility, whereas double 
mutations can decrease susceptibility more than 100-fold. 
Several accessory mutations in the HR2 region 
corresponding to the peptide sequence of enfuvirtide 
including N126K, N137K, and S138A appear to improve 
fitness in combination with specific mutations at positions 
36-45274-277. Similar enfuvirtide resistance mutations ap­
pear to emerge in subtype B and non-B isolates278,279.

Enfuvirtide-resistant HIV-1 isolates replicate less well 
than enfuvirtide-susceptible isolates, as evidenced by 
in vitro competition studies280 and by the rapid reversion 
to wild-type that occurs in patients who discontinue 
enfuvirtide281. There are some conflicting data on the 
clinical benefit of continued therapy in the presence of 
incomplete virologic suppression. One study showed 
that interruption of therapy was associated with a mean 
increase in plasma HIV-1 RNA levels of just 0.2 log10 
and no decrease in CD4 count281. However, other studies 
have suggested that some enfuvirtide resistance 
mutations, particularly those at position 38, may be 
associated with CD4 count increases282, possibly 
because mutations at this position may decrease virus 
replication or render the virus more susceptible to neu­
tralizing antibodies that target fusion intermediates283.

CCR5 inhibitors 

The licensed small molecule inhibitor maraviroc and 
the investigational small molecule inhibitor vicriviroc 
(formerly SCH-D) allosterically inhibit HIV-1 gp120 bind­
ing to the seven-transmembrane G protein-coupled 
CCR5 coreceptor. Whereas HIV-1 gp120 binds to the 
N-terminus and second extracellular loop region of 
CCR5284, site-directed mutagenesis and molecular 
modeling studies suggest that most small molecule 
inhibitors bind to a pocket formed by the transmem­
brane helices285-290.

The HIV-1 gp120 has a highly variable sequence, 
and different HIV-1 isolates display variable suscepti­
bility to inhibition by different ligands and small mole­
cule inhibitors291,292. Nonetheless, there appear to be 
minimal differences in the susceptibility of wild-type 
viruses (even those belonging to different subtypes), 
to maraviroc293 and vicriviroc294, suggesting that these 

Table 4. Integrase inhibitor resistance mutations* 

66 92 121 138 140 143 147 148 153 155 157 263 

T E F E G Y S Q S N E R 

Raltegravir† Q Y AK AS CHR G HRK HS Q

Elvitegravir‡ I Q Y AK AS n/a G HRK Y HS Q K 

*The first row of letters contains the consensus amino acid at the position indicated by the number in the preceding row. All amino acids are indicated by their one letter code. 
INI-resistance mutations selected in patients receiving raltegravir251,257 or elvitegravir252 and characterized in vitro for susceptibility250,252,253,255. Mutations in bold are 
associated with > 5-10 fold decreased susceptibility256.
†Other mutations selected in vitro or in vivo by raltegravir include the non-polymorphic mutations H183P, Y226DFH, S230R, and D232N, and the polymorphic mutations 
L74M, T97A, V151I, G163R, I203M, and S230N256. 
‡Other mutations selected in vitro or in vivo by elvitegravir include the non-polymorphic mutation H51Y, Q95K, and Q146P. Additional integrase mutations selected by other 
investigational integrase inhibitors include the non-polymorphic mutations T125K, A128T, Q146K, N155S, K160D and the polymorphic mutations V72I, M154I, V165I and V201I249.
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inhibitors disrupt a highly conserved protein-protein 
interaction. Moreover, in vitro passage experiments have 
generally demonstrated that high-level resistance 
emerges only after several months of passage, 
suggesting that the genetic barrier to resistance to 
CCR5 inhibitors is not low295-298. Nonetheless, HIV-1 may 
escape from CCR5 inhibition by developing CCR5 in­
hibitor resistance or by utilizing the CXCR4 coreceptor. 

CCR5 inhibitor resistance 

The genotypic and phenotypic mechanisms of CCR5 
inhibitor resistance and cross-resistance are complex 
and poorly understood. Dose-response curves suggest 
that there are at least two phenotypic mechanisms of 
resistance: (i) enhanced binding to unbound CCR5, 
manifested by a shift in the typical sigmoid dose-
response curves resulting from the requirement of a 
several-fold increase in the concentration of inhibitor 
required to suppress virus in a manner similar to wild-
type292,297-300; and (ii) enhanced binding to a CCR5-
inhibitor complex, manifested by a plateau in the 
maximal percent inhibition (MPI) regardless of inhibitor 
concentration. Such plateaus have been observed when 
testing both individual virus clones as well as virus 
populations within a clinical isolate. For a virus clone, 
the level of the MPI plateau is expected to be inversely 
proportional to the relative affinity of the clone for the 
bound compared with the unbound form of the recep­
tor298. For a virus isolate, the level of the MPI plateau 
is expected to be inversely proportional to the number 
of viruses within the isolate with affinity for the bound 
compared with the unbound form of the receptor292. 

Viruses with high levels of CCR5 inhibitor resistance 
(> 1,000-fold reductions in IC50 as well as an MPI plateau) 
have been identified during in vitro passage experi­
ments with most CCR5 inhibitors297-299,301,302. The amino 
acid changes responsible for resistance may be en­
tirely within the V3 loop298,299, entirely outside of the V3 
loop297, or may result from synergistic interactions 
between substitutions in the V3 loop and other parts of 

env302. These amino acid changes may include known 
polymorphisms as well as novel substitutions, insertions, 
and deletions. Further complicating the genetic basis 
of CCR5 inhibitor resistance is the observation that the 
same inhibitor may select for different mutations in 
different virus isolates297,298,302.

The mechanisms of CCR5 inhibitor resistance in vivo 
may be even more complicated than those that have 
been observed to emerge in vitro. First, virus isolates 
from the majority of patients developing virologic failure 
while receiving maraviroc303 or vicriviroc304 have not 
demonstrated phenotypic resistance. Second, the few 
viruses with phenotypic resistance (four of 37 for 
maraviroc and one of seven for vicriviroc) have 
demonstrated only subtle MPI reductions rather than 
the MPI reductions and large increases in IC50 that 
have been observed during the emergence of resis­
tance in vitro. Finally, the mutations that have been 
observed in vivo have been highly variable, differing 
for each virus isolate303,304. 

CXCR4 tropism 

At the time of initial HIV-1 infection, at least 80-90% 
of patients have viruses that exclusively use CCR5 as 
their coreceptor (R5 tropic). During the course of infection, 
about 50% of patients with subtype B infections are 
eventually found to harbor viruses that use the CXCR4 
coreceptor (X4 tropic)305-308. The emergence of X4 
tropism usually occurs in later disease stages and, in 
the absence of ARV therapy, is followed by accelerated 
CD4 cell depletion. When X4-tropic viruses emerge, 
they usually co-circulate with R5-tropic viruses as 
minor variants306,309-311. Some X4-tropic viruses are 
also R5 tropic, although most such dual-tropic HIV-1 
clones usually infect only one of the two coreceptors 
efficiently311,312.

The main determinants for coreceptor tropism are in 
the V3 loop, although changes outside of the V3 loop 
may also influence tropism, either in combination or 
independently of V3 changes284,313-319. The presence 

Table 5. Fusion inhibitor resistance mutations* 

G36 I37 V38 Q40 N42 N43 L44 L45 

Enfuvirtide DEVS V EAMG H T DKS M M 

*Mutations in bold reduce enfuvirtide susceptibility > 10-fold in site-directed mutants and most clinical isolates. N42S is the only common polymorphism between codons 36 to 
45. It occurs in about 15% of untreated isolates and does not decrease enfuvirtide susceptibility269. Most other mutations at these positions are likely to have been selected by 
enfuvirtide, although their effect on enfuvirtide susceptibility may not have been reported. Several accessory mutations in the HR2 region corresponding to the peptide 
sequence of enfuvirtide including N126K, N137K, and S138A have been shown to emerge to improve fitness in combination with specific mutations at positions 36 to 45274-277.
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of positively charged amino acids at positions 11 and 
25 in the V3 loop, combined with several other V3 
sequence characteristics, have a specificity of about 
90% and sensitivity of 70-80% for predicting X4 tropism 
of individual virus clones belonging to subtype 
B284,316-318. However, the number and type of mutations 
by which an R5-tropic virus becomes X4 tropic is com­
plex and depends on the sequence of the baseline R5 
virus284,313-315,320. Preliminary data also suggests that 
the frequency and genetic basis for tropism switches 
may be different for different subtypes284,312. 

A phenotypic assay has recently been developed to 
assess the tropism of complete env genes (gp120 plus 
gp41) amplified from patient samples (Trofile™, 
Monogram Biosciences)311. Amplified env genes are 
ligated into env expression test vectors (eETVs), which 
following co-transfection with env-deleted genomic 
vectors are used to create a population of pseudoviri­
ons. CD4+/U87 cells expressing CCR5 or CXCR4 are 
inoculated with these pseudovirions, and infection of 
each cell type is measured using a luciferase-based 
reporter system. In reconstruction experiments, X4-
tropic variants can also be detected even when they 
constitute 1-5% of a mixed virus population311,321. 
However, because the amplification sensitivity of the 
assay is reliable only when plasma HIV-1 RNA levels 
are > 1,000 copies/ml, the full sensitivity of the assay 
will be achievable only in patients with plasma HIV-1 
RNA levels > 10,000 copies/ml.

The factors responsible for the emergence of X4 
tropism and for the proportion of X4 variants relative to 
R5 variants in those patients in whom X4-tropic viruses 
do emerge are not known. Yet, these factors have 
implications for detecting X4-tropic viruses to deter­
mine whether a CCR5 inhibitor will be effective. In a 
10-day monotherapy study of maraviroc in 62 patients 
with CD4 counts > 250 cells/ul and the absence of 
X4 variants by Trofile™ testing, X4 emergence and 
virologic rebound occurred in two patients322,323. 
Phylogenetic analysis of env clones from pre- and 
posttreatment time points indicated that the X4 variants 
probably emerged by outgrowth from a pretreatment 
X4 reservoir323. Considering that seven patients had 
been excluded from this study owing to the presence 
of X4 variants at screening, X4 variants were detected 
successfully at baseline in only seven of nine cases322. 
Similar findings were reported in patients receiving 
maraviroc in the MOTIVATE I and II trials324, as well as 
in clinical trials of vicriviroc325 and aplaviroc326.

Improved sensitivity for detecting X4 variants is required 
to ensure that CCR5 inhibitors are optimally used. The 

Trofile™ test is more sensitive than genotypic methods 
for detecting X4-tropic viruses in clinical samples for 
at least two reasons. First, because the assay uses 
complete patient-derived env genes, it can detect X4 
tropism even when the changes responsible are outside 
of the V3 loop327. Second, the assay is more sensitive at 
detecting X4-tropic variants that are below the 20-30% 
limit of detection of standard population-based geno­
typic assays. Indeed, this factor alone appears to be 
responsible for the drop in sensitivity for V3 genotyping 
from 70-80% on individual clones to 30% on clinical 
samples318,327. Novel genotypic approaches such as 
ultra-deep pyrosequencing methods that simultaneously 
sequence multiple individual clones in a patient sam­
ple328,329 and novel bioinformatic approaches for analyz­
ing these sets of sequences will be required to attain 
sensitivities approaching that of phenotypic assays. 
Although the complex genetic basis for coreceptor 
tropism poses a hurdle for genotypic relative to 
phenotypic approaches, this drawback may be offset 
if genotypic methods are capable of identifying tran­
sitional R5 to X4 variants that may be surrogates for 
the presence of low-level X4 emergence. 
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